Third Fungus, First Mushroom, Has its Genome Sequenced


Many organisms have enzymes that efficiently degrade cellulosic materials. One such group of organisms is the fungi which break down dead wood and leaf litter in forests. The DOE Joint Genome Institute (JGI) previously sequenced and published the genomes of two wood-decaying fungi. Now a team of researchers led by scientists from the DOE JGI and the University of Utrecht in the Netherlands announce the analysis of a third such genome, the mushroom Schizophyllum commune, in a study published online July 11 in Nature Biotechnology. Found on every continent except Antarctica, S. commune is a white rot fungus that breaks down cellulose and lignin by invading xylem tissue. It is easily grown in the lab and is experimentally tractable, i.e., its genes can be deleted to determine what they do. Researchers studying the 38.5 million base pair genome found more variability in the biomass-degrading enzymes than seen in previously sequenced fungi. They hope this variability will help them understand S. commune’s “unique way of lignin degradation” so that it can be applied to bioenergy production. The DOE JGI is in the process of sequencing over a dozen more wood-decaying fungi and is presently responsible for more than a third of all fungal genomes sequenced or in the queue to be sequenced.


Ohm, R. A., et al. “Genome sequence of the model mushroom Schizophyllum commune,” Nature Biotechnology published online 11 July 2010; doi:10.1038/nbt.1643.