09/24/2012
Regional Look at the Risks of Climate Change
Summary
As the threat of climate change grows, the importance of understanding possible regional impacts-especially to temperature and precipitation-also grows. Researchers from the Massachusetts Institutes of Technology (MIT), Pennsylvania State University, and Tufts University have widened the scope and flexibility of analysis by quantifying the likelihood of particular regional outcomes, adding in socio-economic data, different emission scenarios, and various levels of risk and uncertainty. In a recent study, the researchers developed hybrid frequency distributions by combining climate-model projections and analysis from the Intergovernmental Panel on Climate Change (IPCC) with the MIT Integrated Global System Modeling (IGSM) framework. The study finds that while some regions are affected by emission reduction measures more than others, when comparing business-as-usual with a greenhouse gas stabilization scenario, lowering emissions does reduce the odds of regional warming. In fact, the most extreme warming outcome from the business-as-usual case is eliminated entirely. South and West Africa, the Himalayan region, and the greater Hudson Bay basin are expected to see some of the largest relative warming. At the same time, the odds of regional precipitation changes are seen as both increases and decreases by the middle of this century. In the business-as-usual scenario, there is a greater chance that western Europe and southern Africa will overall be dryer, while the Amazon and northernmost Siberian regions will become wetter.
References
Schlosser, C. A., X. Gao, K. Strzepek, A. Sokolov, C. E. Forest, S. Awadalla, and W. Farmer. 2012. “Quantifying the Likelihood of Regional Climate Change: A Hybridized Approach,” Journal of Climate, DOI: DOI:10.1175/JCLI-D-11-00730.1.