01/14/2016
Quantifying the Increasing Role of Oceanic Heat in New Arctic Sea Ice Loss
Summary
The loss of Arctic sea ice has emerged as a leading signal of global warming. Sea ice loss, together with acknowledged impacts on other components of the Earth system, has led to the term ‘New Arctic.’ Global coupled climate models predict that ice loss will continue through the 21st century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions among the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. A recent study summarizes present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific water, river discharges, and summer sensible heat and shortwave radiative fluxes at the ocean and ice surface—and speculates how such processes may change in the New Arctic. The complexity of the coupled Arctic system and the logistical and technological challenges of working in the Arctic Ocean require a coordinated interdisciplinary and international program that not only improves understanding of this critical component of global climate, but also provides opportunities for developing human resources with the skills required to tackle related problems in complex climate systems. This study proposes a research strategy that includes: 1) improved mapping of the upper and mid-depth Arctic Ocean, 2) enhanced quantification of important processes, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat flux mechanisms and their interactions.
References
Carmack, E., I. Polyakov, L. Padman, I. Fer, E. Hunke, J. Hutchings, J. Jackson, D. Kelley, R. Kwok, C. Layton, H. Melling, D. Perovich, O. Persson, B. Ruddick, M.-L. Timmermans, J. Toole, T. Ross, S. Vavrus, and P. Winsor. 2015. “Towards Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic,” Bulletin of the American Meteorological Society, 2079-105. DOI: 10.1175/BAMS-D-13-00177.1.