Permafrost Metaomics and Climate Change

A review of various molecular omics studies on permafrost microbial ecology under a changing climate.

The Science

Permanently frozen soil, or permafrost, covers a large portion of Earth’s terrestrial surface, and, as permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. A recent review summarizes the current information from various molecular omics studies on permafrost microbial ecology and explores the relevance of these insights to current understanding of the dynamics of permafrost loss due to climate change.

The Impact

Application of high-throughput sequencing and other omics technologies is enabling the study of permafrost microbial communities and providing high-resolution information about community composition and function in a variety of permafrost locations.


Permafrost is highly heterogeneous, and the impacts of thaw differ dramatically depending on geography, biochemistry, and microbial residents. A recent review summarizes the current state of knowledge about microbial ecology both within permafrost and in the soil layers activated as permafrost thaws, with an emphasis on the use of modern, high-throughput sequencing technologies to understand permafrost-associated microbial communities and their response to climate change. Understanding of the microbial mechanisms controlling greenhouse gas emissions is in its infancy. Metagenomics must be coupled with enhanced measurements of geochemistry and microbial processes to develop a comprehensive understanding of microbial function and activity in permafrost. Predictive understanding will require information generated by both laboratory-based experiments and long-term in situ studies. In the near future, it is imperative for knowledge generated by metagenomics and other omics approaches to be incorporated into climate models to fully integrate microbiology, geochemistry, geophysics, and hydrology for a better representation of Arctic ecosystems.

Principal Investigator(s)

Neslihan Tas
Lawrence Berkeley National Laboratory


This work was supported in part by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science (TES) program, under contract number DE-AC02-05CH11231. The authors acknowledge additional financial support from the Microbiomes in Transition (MinT) Initiative at Pacific Northwest National Laboratory, under contract number DE-AC05-76LO1803; DOE Next-Generation Ecosystem Experiment-Arctic (NGEE-Arctic) project; Danish Center for Permafrost (CENPERM); California State University Program for Education and Research in Biotechnology (CSUPERB) New Investigator Grant program; National Aeronautics and Space Administration Exobiology Program (award number NNX15AM12G), DOE Office of Biological and Environmental Research (award number DE-SC0004632); and University of Arizona Technology and Research Initiative Fund, through the Water, Environmental and Energy Solutions Initiative.


Mackelprang, R., S. R. Saleska, C. S. Jacobsen, J. K. Jansson, and N. Tas. 2016. “Permafrost Meta-Omics and Climate Change,” Annual Review of Earth and Planetary Sciences 44, 439-62. DOI: 10.1146/annurev-earth-060614-105126.