04/01/2015

Hector: A Simple Climate Model for Scientific Analyses

Summary

Understanding the interactions of key Earth system processes is important for projecting how human activities will affect global climate. A recent study introduces Hector v1.0, a simple climate model developed by a team of researchers from the Department of Energy’s Pacific Northwest National Laboratory and collaborators from the University of Maryland. Hector was designed to be fully integrated into integrated assessment (IA) modeling tools and studies that provide rapid emulation of key climate parameters. Within this context of integrated analysis, Hector was designed with three goals in mind. First, Hector is an open-source model, which is important because the scientific community, funding agencies, and journals are increasingly emphasizing transparency and open source, particularly in the climate change sciences. Second, Hector offers a framework that allows for ease in editing files, adding new components, and sharing with the scientific community. Third, in addition to being an integral component of IA models, Hector also can operate in stand-alone mode. Hector can answer fundamental scientific questions such as what future concentrations of greenhouse gases will be and how they will affect the balance of heat that enters and leaves Earth’s atmosphere. Hector represents the most critical global-scale Earth system processes while featuring fast computational execution times, clear understanding, and straightforward output analysis. Hector compares well to other similar climate models, as well as the more complex Earth system models. Because of these qualities, Hector has the potential to be a key analytical tool in IA research, scientific research more generally, and decision-making.

References

Hartin, C. A., P. Patel, A. Schwarber, R. P. Link, and B. P. Bond-Lamberty. 2015. “A Simple Object-Oriented and Open-Source Model for Scientific and Policy Analyses of the Global Climate System: Hector v1.0,” Geoscientific Model Development 8, 939–55. DOI: 10.5194/gmd-8-939-2015.